References
Brown, Christopher F., Michal R. Kazmierski, Valerie J. Pasquarella,
William J. Rucklidge, Masha Samsikova, Chenhui Zhang, Evan Shelhamer, et
al. 2025. “AlphaEarth Foundations: An
Embedding Field Model for Accurate and Efficient Global Mapping from
Sparse Label Data.” arXiv. https://doi.org/10.48550/arXiv.2507.22291.
“Clay-Foundation/Model.” 2025. Clay Foundation. https://github.com/Clay-foundation/model.
DeepMind. 2025. “Supplemental Training
Coordinates.” Zenodo. https://zenodo.org/records/16585910.
Dinerstein, Eric, David Olson, Anup Joshi, Carly Vynne, Neil D. Burgess,
Eric Wikramanayake, Nathan Hahn, et al. 2017. “An
Ecoregion-Based Approach to Protecting Half
the Terrestrial Realm.” BioScience 67 (6):
534–45. https://doi.org/10.1093/biosci/bix014.
Dumoulin, Vincent, and Francesco Visin. 2018. “A Guide to
Convolution Arithmetic for Deep Learning.” arXiv. https://doi.org/10.48550/arXiv.1603.07285.
François. 2023. The Little Book of Deep Learning. Writers
Republic LLC. https://books.google.de/books?id=dZsF0AEACAAJ.
Freiesleben, Timo, and Christoph Molnar. 2024. Supervised Machine
Learning for Science: How to Stop Worrying and Love Your Black Box.
https://ml-science-book.com/.
Helber, Patrick, Benjamin Bischke, Andreas Dengel, and Damian Borth.
2018a. “Introducing EuroSAT: A Novel Dataset and Deep Learning
Benchmark for Land Use and Land Cover Classification.” In
IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing
Symposium, 204–7. IEEE.
———. 2018b. “EuroSAT: A Novel Dataset
and Deep Learning Benchmark for Land Use and
Land Cover Classification.” Zenodo. https://zenodo.org/records/7711810.
———. 2019. “Eurosat: A Novel Dataset and Deep Learning Benchmark
for Land Use and Land Cover Classification.” IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing.
Hof, Anouschka R., Roland Jansson, and Christer Nilsson. 2012.
“The Usefulness of Elevation as a Predictor Variable in Species
Distribution Modelling.” Ecological Modelling 246
(November): 86–90. https://doi.org/10.1016/j.ecolmodel.2012.07.028.
Huot, Fantine, R. Lily Hu, Nita Goyal, Tharun Sankar, Matthias Ihme, and
Yi-Fan Chen. 2022. “Next Day Wildfire Spread: A
Machine Learning Dataset to Predict Wildfire Spreading From
Remote-Sensing Data.” IEEE Transactions on Geoscience
and Remote Sensing 60: 1–13. https://doi.org/10.1109/TGRS.2022.3192974.
Jakubik, Johannes, Sujit Roy, C. E. Phillips, Paolo Fraccaro, Bianca
Zadrozny, Pontus Olofsson, Daniela Szwarcman, et al. 2024.
“Foundation Models for Generalist Geospatial
Artificial Intelligence.” {{SSRN Scholarly Paper}}.
Rochester, NY: Social Science Research Network. https://doi.org/10.2139/ssrn.4804009.
Lin, Tsung-Yi, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár.
2020. “Focal Loss for Dense Object
Detection.” IEEE Transactions on Pattern Analysis and
Machine Intelligence 42 (2): 318–27. https://doi.org/10.1109/TPAMI.2018.2858826.
“MOSAIKS Feature Extraction Tutorial by
Microsoft.” n.d. GitHub. https://github.com/microsoft/PlanetaryComputerExamples/blob/main/tutorials/mosaiks.ipynb.
Radford, Alec, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, et al. 2021. “Learning
Transferable Visual Models From Natural Language
Supervision.” International Conference on Machine
Learning, 8748–63.
Rolf, Esther, Jonathan Proctor, Tamma Carleton, Ian Bolliger, Vaishaal
Shankar, Miyabi Ishihara, Benjamin Recht, and Solomon Hsiang. 2021.
“A Generalizable and Accessible Approach to Machine Learning with
Global Satellite Imagery.” Nature Communications 12 (1):
4392. https://doi.org/10.1038/s41467-021-24638-z.
Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. 2015. “U-Net:
Convolutional Networks for Biomedical Image Segmentation.” In
Medical Image Computing and Computer-Assisted Intervention–MICCAI
2015: 18th International Conference, Munich, Germany, October 5-9, 2015,
Proceedings, Part III 18, 234–41. Springer.